The American Association of Petroleum Geologists gratefully acknowledges and appreciates the leadership and support of the AAPG Foundation in the development of the Treatise of Petroleum Geology.
EXPLORING FOR OIL AND GAS TRAPS

EDWARD A. BEAUMONT
NORMAN H. FOSTER
Editors

TREATISE OF PETROLEUM GEOLOGY
HANDBOOK OF PETROLEUM GEOLOGY

TREATISE EDITORS:
NORMAN H. FOSTER
AND
EDWARD A. BEAUMONT

Published by
The American Association of Petroleum Geologists
Tulsa, Oklahoma, U.S.A. 74101
Table of Contents

Treatise of Petroleum Geology Advisory Board ix
AAPG Foundation Treatise of Petroleum Geology Fund xi
Preface to the Handbook of Petroleum Geology xiii
Preface ... xiii
Dedication .. xiv

1 Developing a Philosophy of Exploration
Edward A. Beaumont, Norman H. Foster, Richard R. Vincelette, Marlan W. Downey, and James D. Robertson
The art and science of exploring for oil and gas 1- 4
Characteristics of oil finders 1-12
Leading and managing explorationists 1-21
Applying the scientific method to petroleum exploration 1-26
Analog exploration 1-32

Part I Traps, Trap Types, and the Petroleum System

2 Classification of Exploration Traps
Richard R. Vincelette, Edward A. Beaumont, and Norman H. Foster
Classification philosophy 2- 4
How to use the classification scheme 2-13
Details of the trap classification scheme 2-19

3 Petroleum Systems
Leslie B. Magoon and Edward A. Beaumont
Defining a petroleum system 3- 4
Examples of two petroleum systems 3-14
Applying the petroleum system concept 3-24

Part II Critical Elements of the Petroleum Province

4 Sedimentary Basin Analysis
John M. Armentrout
Basin framework .. 4- 5
Depocenters .. 4-22
Depositional sequences 4-30
Depositional systems tracts 4-45
Minibasins and petroleum systems 4- 78
Summary and exploration strategy, deepwater sands 4-107
Table of Contents, continued

Part II (continued)

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Formation Fluid Pressure and Its Application</td>
<td>Edward A. Beaumont and Forrest Fiedler</td>
<td>5–4</td>
</tr>
<tr>
<td></td>
<td>Pressure regimes</td>
<td></td>
<td>5–4</td>
</tr>
<tr>
<td></td>
<td>Using pressures to detect hydrocarbon presence</td>
<td></td>
<td>5–11</td>
</tr>
<tr>
<td></td>
<td>Predicting abnormal pressures</td>
<td></td>
<td>5–36</td>
</tr>
<tr>
<td></td>
<td>Pressure compartments</td>
<td></td>
<td>5–44</td>
</tr>
<tr>
<td></td>
<td>Capillarity and buoyancy</td>
<td></td>
<td>5–53</td>
</tr>
<tr>
<td></td>
<td>Hydrodynamics</td>
<td></td>
<td>5–57</td>
</tr>
<tr>
<td>6</td>
<td>Evaluating Source Rocks</td>
<td>Carol A. Law</td>
<td>6–4</td>
</tr>
<tr>
<td></td>
<td>Source rock basics</td>
<td></td>
<td>6–4</td>
</tr>
<tr>
<td></td>
<td>Evaluating source rock richness</td>
<td></td>
<td>6–7</td>
</tr>
<tr>
<td></td>
<td>Evaluating source rock quality</td>
<td></td>
<td>6–16</td>
</tr>
<tr>
<td></td>
<td>Evaluating source rock maturity</td>
<td></td>
<td>6–21</td>
</tr>
<tr>
<td></td>
<td>Relationships between maturity and hydrocarbon generation</td>
<td></td>
<td>6–33</td>
</tr>
<tr>
<td>7</td>
<td>Migration of Petroleum</td>
<td>Martin D. Matthews</td>
<td>7–4</td>
</tr>
<tr>
<td></td>
<td>Migration concepts</td>
<td></td>
<td>7–4</td>
</tr>
<tr>
<td></td>
<td>Mechanisms of migration</td>
<td></td>
<td>7–12</td>
</tr>
<tr>
<td></td>
<td>Changes in hydrocarbon composition during migration</td>
<td></td>
<td>7–18</td>
</tr>
<tr>
<td></td>
<td>Migration pathways</td>
<td></td>
<td>7–22</td>
</tr>
<tr>
<td></td>
<td>Calculating migration rate and charge volume</td>
<td></td>
<td>7–29</td>
</tr>
<tr>
<td>8</td>
<td>Oil–Oil and Oil–Source Rock Correlations</td>
<td>Douglas A. Waples and Joseph A. Curiale</td>
<td>8–4</td>
</tr>
<tr>
<td></td>
<td>Introduction to correlations</td>
<td></td>
<td>8–4</td>
</tr>
<tr>
<td></td>
<td>Data used in correlations</td>
<td></td>
<td>8–12</td>
</tr>
<tr>
<td></td>
<td>Case histories</td>
<td></td>
<td>8–54</td>
</tr>
</tbody>
</table>

Part III

Critical Elements of the Trap

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Predicting Reservoir System Quality and Performance</td>
<td>Dan J. Hartmann and Edward A. Beaumont</td>
<td>9–4</td>
</tr>
<tr>
<td></td>
<td>Reservoir system basics</td>
<td></td>
<td>9–4</td>
</tr>
<tr>
<td></td>
<td>Classifying pore systems</td>
<td></td>
<td>9–17</td>
</tr>
<tr>
<td></td>
<td>Pore–fluid interaction</td>
<td></td>
<td>9–26</td>
</tr>
<tr>
<td></td>
<td>Water saturation</td>
<td></td>
<td>9–44</td>
</tr>
<tr>
<td></td>
<td>Predicting reservoir system quality</td>
<td></td>
<td>9–74</td>
</tr>
<tr>
<td></td>
<td>Examples of petrophysical evaluation</td>
<td></td>
<td>9–125</td>
</tr>
</tbody>
</table>
Table of Contents, continued

Part III

10 Evaluating Top and Fault Seal

Grant M. Skerlec

- Evaluating fault seal ... 10–4
- Evaluating top seal integrity 10–45
- Evaluating intact top seal 10–64

11 Predicting Preservation and Destruction of Accumulations

Alton A. Brown

- Basics: destructive processes and age 11–4
- Spillage .. 11–6
- Leakage ... 11–13
- Petroleum destruction ... 11–21

Part IV

Predicting the Occurrence of Oil and Gas Traps

12 Interpreting Seismic Data

Christopher L. Liner

- Seismic primer .. 12–4
- Identifying seismic events .. 12–12
- Interpreting structure .. 12–19

13 Interpreting 3-D Seismic Data

Geoffrey A. Dorn

- Basics of interpreting 3-D seismic data 13–4
- Stratigraphic interpretation techniques of 3-D data 13–16
- Attributes ... 13–20
- Visualization techniques for 3-D data 13–23

14 Using Magnetics in Petroleum Exploration

Edward A. Beaumont and S. Parker Gay, Jr.

- Magnetic basics .. 14–4
- Interpreting magnetic data .. 14–8

15 Applying Gravity in Petroleum Exploration

David A. Chapin and Mark E. Ander

- Applying general gravity methods 15–4
- Applying borehole gravity methods 15–15

16 Applying Magnetotellurics

Arnie Ostrander

- What is magnetotellurics (MT)? 16–4
- What does an MT survey measure? 16–5
- How are MT data acquired? .. 16–6
- Case histories .. 16–8
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Applied Paleontology</td>
<td>Robert L. Fleisher and H. Richard Lane</td>
<td>Paleontology and microfossils, Sample collection and treatment, Stratigraphic and geographic distribution of fossils, Applications, New directions</td>
</tr>
<tr>
<td>18</td>
<td>Surface Geochemical Exploration for Petroleum</td>
<td>Dietmar Schumacher</td>
<td>Principles of surface geochemical exploration, Designing surface geochemical surveys, Case histories</td>
</tr>
<tr>
<td>19</td>
<td>Value of Geological Fieldwork</td>
<td>Denise M. Stone</td>
<td>Why conduct geological fieldwork?, Necessary considerations, Some thoughts about geological fieldwork</td>
</tr>
<tr>
<td>20</td>
<td>Exploring for Structural Traps</td>
<td>R.A. Nelson, T.L. Patton, and S. Serra</td>
<td>Basic structural approach, Structural interpretation techniques and tools, Workflow to find a prospect, Project planning: The one-minute structural play for managers</td>
</tr>
</tbody>
</table>

Index
TREATISE OF PETROLEUM GEOLOGY

ADVISORY BOARD

Ward O. Abbott
Abdulaziz A. Al-Laboun
John J. Amoruso
George G. Anderman
John D. Armstrong
George B. Asquith
Donald W. Axford
Colin Barker
Ian R. Baron
Ted L. Bear
Edward A. Beaumont
Robert R. Berg
Steve J. Blanke
Richard R. Bloomer
John F. Bookout, Jr.
Louie C. Bortz
Donald R. Boyd
Robert L. Brenner
William D. Brumbaugh
Raymond Buchanan
Daniel A. Busch
Nick Cameron
David G. Campbell
J. Ben Carsey*
Duncan M. Chisholm
H. Victor Church*
Don Clutterbuck
J. Glenn Cole
J. Frank Conrad
Robert J. Cordell
Robert D. Cowdery
Marshall C. Crouch, III
William H. Curry, III
Doris M. Curtis*
Graham R. Curtis
Clint A. Darnall*
Patrick Daugherty
Edward K. David
Herbert G. Davis
Gerard J. Demaison
Parke A. Dickey
Fred A. Dix, Jr.
Charles F. Dodge
Edward D. Dolly
James C. Donaldson
Ben Donegan
Robert H. Dott*
John H. Doveton
Marlan W. Downey
Bernard M. Durand
Richard Ebens
Joel S. Empie
Charles T. Feazel
William L. Fisher
Norman H. Foster*
James F. Friberg
Richard D. Fritz
Lawrence W. Funkhouser
William E. Galloway
Donald L. Gautier
Lee C. Gerhard
James A. Gibbs
Melvin O. Glerup
Arthur R. Green
Donald A. Greenwood
R. R. Robbie Gries
Richard W. Griffin
Robert D. Gunn
Alfredo Eduardo Guzman
Merrill W. Haas
Cecil V. Hagen*
J. Bill Hailey
Michel T. Halbouty
Bernold M. Hanson
Tod P. Harding
Donald G. Harris
Paul M. Harris
Frank W. Harrison, Jr.
Dan J. Hartmann
John D. Haun
Hollis D. Hedberg*
James A. Helwig
Thomas B. Henderson, Jr.
Neville M. Henry
Francis E. Heritier
Paul Hess
Lee Higgins
Mason L. Hill
David K. Hobday
David S. Holland
Myron K. Horn
Gary D. Howell
Michael E. Hriskeyevich
Joseph P. D. Hull, Jr.
H. Herbert Hunt
Norman J. Hyne
J. J. C. Ingels
Russell W. Jackson
Michael S. Johnson
David H. Johnston
Bradley B. Jones
Peter G. Kahn
John E. Kilkenny*
H. Douglas Klemme
Allan J. Koch
Raden P. Koesoemadinate
Hans H. Krause
James E. Kreutzfeld
Naresh Kumar
Susan M. Landon
Kenneth L. Larner
Rolf Magne Larsen
Roberto A. Leigh
Jay Leonard
Raymond C. Leonard
Howard H. Lester
Christopher J. Lewis
Donald W. Lewis
James O. Lewis, Jr.
Detlev Leythaeuser
Robert G. Lindblom
Roy O. Lindseth
John P. Lockridge
Anthony J. Lomando
John M. Long
Susan A. Longacre
James D. Lowell
Peter T. Lucas
Andrew S. Mackenzie
Jack P. Martin
Michael E. Mathy
Vincent Matthews, III
Paul R. May
James A. McCabe*
Dean A. McGee*
Philip J. McKenna
Jere W. McKenney
Richard M. Meek
Robert E. Megill
Robert W. Meier
Fred F. Meissner
Robert K. Merrill
David L. Mikesh
Marcus Milling
George Mirkin
Michael D. Mitchell
Richard J. Moiola
Francisco Moreno
Grover E. Murray
D. Keith Murray
<table>
<thead>
<tr>
<th>Norman S. Neidell</th>
<th>George L. Scott, Jr.</th>
<th>B. van Hoorn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles R. Noll</td>
<td>Faroog A. Sharief</td>
<td>Kent Lee Van Zant</td>
</tr>
<tr>
<td>Clifton J. Nolte</td>
<td>John W. Shelton</td>
<td>Ian R. Vann</td>
</tr>
<tr>
<td>David W. Organ</td>
<td>Phillip W. Shoemaker</td>
<td>Harry K. Veal*</td>
</tr>
<tr>
<td>John C. Osmond</td>
<td>Synthia E. Smith</td>
<td>Steven L. Veal</td>
</tr>
<tr>
<td>Philip Oxley*</td>
<td>Robert M. Sneider</td>
<td>Richard R. Vincelette</td>
</tr>
<tr>
<td>Susan E. Palmer</td>
<td>Frank P. Sonnenberg</td>
<td>Fred J. Wagner, Jr.</td>
</tr>
<tr>
<td>John M. Parker</td>
<td>William E. Speer</td>
<td>Carol A. Walsh</td>
</tr>
<tr>
<td>Stephen J. Patmore</td>
<td>Ernest J. Spradlin</td>
<td>Anthony Walton</td>
</tr>
<tr>
<td>Dallas L. Peck</td>
<td>Bill St. John</td>
<td>Douglas W. Waples</td>
</tr>
<tr>
<td>William H. Pelton</td>
<td>Philip H. Stark</td>
<td>Harry W. Wassall, III</td>
</tr>
<tr>
<td>Alain Perrodon</td>
<td>Richard Steinmetz</td>
<td>W. Lynn Watney</td>
</tr>
<tr>
<td>James A. Peterson</td>
<td>Per R. Stokke</td>
<td>N. L. Watts</td>
</tr>
<tr>
<td>R. Michael Peterson</td>
<td>Denise M. Stone</td>
<td>Koenradd J. Weber</td>
</tr>
<tr>
<td>Edward B. Picou, Jr.</td>
<td>Donald S. Stone</td>
<td>Robert J. Weimer</td>
</tr>
<tr>
<td>Max Grow Pitcher</td>
<td>Douglas K. Strickland</td>
<td>Dietrich H. Welte</td>
</tr>
<tr>
<td>David E. Powley</td>
<td>James V. Taranik</td>
<td>Alun H. Whittaker</td>
</tr>
<tr>
<td>William F. Precht</td>
<td>Harry Ter Best, Jr.</td>
<td>James E. Wilson, Jr.</td>
</tr>
<tr>
<td>A. Pulunggono</td>
<td>Bruce K. Thatcher, Jr.</td>
<td>Thomas Wilson</td>
</tr>
<tr>
<td>Bailey Rascoe, Jr.</td>
<td>M. Ray Thomasson</td>
<td>John R. Wingert</td>
</tr>
<tr>
<td>R. Randy Ray</td>
<td>Jack C. Threet</td>
<td>Martha O. Withjack</td>
</tr>
<tr>
<td>Dudley D. Rice</td>
<td>Bernard Tissot</td>
<td>P. W. J. Wood</td>
</tr>
<tr>
<td>Edward P. Riker</td>
<td>Don F. Tobin</td>
<td>Homer O. Woodbury</td>
</tr>
<tr>
<td>Edward C. Roy, Jr.</td>
<td>Don G. Tobin</td>
<td>Walter W. Wornardt</td>
</tr>
<tr>
<td>Eric A. Rudd</td>
<td>Donald F. Todd</td>
<td>Marcelo R. Yrigoyen</td>
</tr>
<tr>
<td>Floyd F. Sabins, Jr.</td>
<td>Harrison L. Townes</td>
<td>Mehmet A. Yukler</td>
</tr>
<tr>
<td>Nahum Schneidermann</td>
<td>M. O. Turner</td>
<td>Zhai Guangming</td>
</tr>
<tr>
<td>Peter A. Scholle</td>
<td>Peter R. Vail</td>
<td>Robert Zinke</td>
</tr>
</tbody>
</table>

Deceased
AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS
FOUNDATION
TREATISE OF PETROLEUM GEOLOGY FUND*

Major Corporate Contributors
($25,000 or more)
Amoco Production Company
BP Exploration Company Limited
Chevron Corporation
Exxon Company, U.S.A.
Mobil Oil Corporation
Oryx Energy Company
Pennzoil Exploration and Production Company
Shell Oil Company
Texaco Foundation
Union Pacific Foundation
Unocal Corporation

Other Corporate Contributors
($5,000 to $25,000)
ARCO Oil & Gas Company
Ashland Oil, Inc.
Cabot Oil & Gas Corporation
Canadian Hunter Exploration Ltd.
Conoco Inc.
Marathon Oil Company
The McGee Foundation, Inc.
Phillips Petroleum Company
Transco Energy Company
Union Texas Petroleum Corporation

Major Individual Contributors
($1,000 or more)
John J. Amoruso
Thornton E. Anderson
C. Hayden Atchison
Richard A. Baile
Richard R. Bloomer
A. S. Bonner, Jr.
David G. Campbell
Herbert G. Davis
George A. Donnelly, Jr.
Paul H. Dudley, Jr.
Lewis G. Fearing
Lawrence W. Funkhouser
James A. Gibbs
George R. Gibson
William E. Gipson
Mrs. Vito A. (Mary Jane) Gotautas
Robert D. Gunn
Merrill W. Haas
Cecil V. Hagen
Frank W. Harrison
William A. Heck
Roy M. Huffington
J. R. Jackson, Jr.
Harrison C. Jamison
Thomas N. Jordan, Jr.
Hugh M. Looney
Jack P. Martin
John W. Mason
George B. McBride
Dean A. McGee
John R. McMillan
Lee Wayne Moore
Grover E. Murray
Rudolf B. Siegert
Robert M. Sneider
Estate of Mrs. John (Elizabeth) Teagle
Jack C. Threet
Charles Weiner
Harry Westmoreland
James E. Wilson, Jr.
P. W. J. Wood

The Foundation also gratefully acknowledges the many who have supported this endeavor with additional contributions.

*Based on contributions received as of June 30, 1992.

Preface to the
Handbook of Petroleum Geology

Exploring for Oil and Gas Traps is one of four books of the Handbook of Petroleum Geology, which is part of the Treatise of Petroleum Geology. The Treatise comprises three different publication sets: the Reprint Series, the Atlas of Oil and Gas Fields, and the Handbook of Petroleum Geology. The Treatise is AAPG’s Diamond Jubilee project, commemorating AAPG’s 75th Anniversary in 1991.

With input from an advisory board of more than 250 geologists and geophysicists from around the world, we designed this entire effort so that the set of publications will represent the cutting edge in petroleum exploration knowledge and application. The Reprint Series provides useful literature from various geological, geophysical, and engineering publications. In some cases, reprinted articles are from obscure sources. The Atlas is a collection of detailed field studies that illustrate the myriad ways oil and gas are trapped. It is also a guide to the petroleum geology of the basins where these fields are found. Field studies like those published in the Atlas are the documentation of petroleum geology. They form the basis for all of our assumptions regarding petroleum geology. From the standpoint of the explorationist who is building and selling prospects, details from field studies can be stored as memories and used to build stronger prospects and convince doubters of the validity of any unique features of a prospect—nothing is more convincing than a close analogy.

The third part of the Treatise, the Handbook of Petroleum Geology, is a professional explorationist’s guide to the methodology and technology used to find fields similar to those described in the Atlas.

The Handbook set is divided into four volumes, each of which addresses one of the four steps of oil and gas prospecting—evaluation of source rocks and migration, evaluation of reservoir quality and properties, evaluation of trapping conditions, and evaluation of economic opportunity. Accordingly, the four volumes of the Handbook are Source and Migration Processes and Evaluation Techniques; Reservoirs; Exploring for Oil and Gas Traps; and The Business of Petroleum Exploration. These publications should be kept close at hand so that when a question arises, an answer can be found quickly and easily.

Edward A. Beaumont and Norman H. Foster
Editors of the Treatise of Petroleum Geology
Preface

Purpose of the book
This book presents, in succinct form, basic concepts of petroleum geology and proven petroleum exploration techniques for locating oil and gas accumulations.

Book theme
This volume is a handbook about prospecting for oil and gas traps. It is a how-to discussion of techniques used to evaluate the critical elements necessary for discovering oil and gas accumulations. For the most part, the chapters focus on procedures first and then discuss concepts that one must understand to apply the procedures effectively.

Book format
The book format is a structured technical writing style known as information mapping. Information mapping makes information more accessible, easier to understand, and easier to remember. It is especially well suited for procedure-based books such as this one.

Intended audience
This volume is directed at professionals with two or more years’ experience. It assumes a basic knowledge of most aspects of petroleum geology and petroleum exploration methods. Basic well log analysis, seismic theory, structural geology, stratigraphy, or sedimentology are not detailed. Instead it concentrates on elements of petroleum geology and petroleum exploration methods that are critical for generating viable prospects.

Contents
The book consists of twenty-one chapters subdivided into four parts. The first chapter serves as a jump-off point for the book’s vision. It contains five sections that discuss various aspects of developing an exploration philosophy. Exploration begins in the mind. How one approaches exploration for oil and gas traps is a result of a philosophy developed through experience, interaction with others such as a mentor, and reading.

- **Part I** contains chapters that deal with the concept of a trap and the geological context of a trap in a petroleum system.
- **Part II** contains chapters discussing sedimentary basin analysis and the behavior of fluids within the basin. These chapters show methods of understanding the development and current condition of a basin and its plumbing system.
- **Part III** narrows the focus to specific critical elements of the trap. It contains chapters that discuss tried-and-true methods for predicting the critical elements of a trap, including reservoir performance, seal existence and quality, and preservation of traps.
- **Part IV** contains chapters that discuss various exploration methods and methods for predicting the location of structural and stratigraphic traps.

Acknowledgments
Our thanks to the authors of this book for their contributions and their patience with us during the editing process. We thank companies and individuals who supported the *Treatise* project through financial contributions and the committee that asked companies for financial support: P.W.J. Wood, James E. Gibbs, David S. Holland, and Jack C. Threet. Special thanks go to the AAPG Foundation and its trustees: Larry Funkhouser, John Amoruso, Jack Threet, Lewis “Bud” Fearing, and Paul Dudley. We especially appreciate the support of Executive Director Fred Dix. Finally, we gratefully acknowledge the persistence, patience, and professionalism of the book’s Project and Content Editor, Kathryn E. Pile. Its quality is the result of her skill and diligence.
Norman H. Foster was an oil and gas finder. During his lifetime, he found lots of it. He found it in basins where others had found it and he found it in basins where others said it couldn't be found. What made Norm Foster so good at finding oil and gas?

Finding oil and gas results from the skillful application of geologic concepts; it is not merely a matter of being lucky. The successful application of the science of petroleum geology is an art that requires the creative flair. That was Norm Foster's philosophy. That is the philosophy of this book. Using an analogy from golf, he used to say, “You have to get the ball close to the hole in order to have a chance for luck.” He hoped that this book will help get you close.

Norman Foster was a geologist's geologist. He was the model of what all professionals should strive to be. At the local level (as a member of the Rocky Mountain Association of Geologists, in Denver, Colorado) he published, led field trips, worked on committees, and served in various offices including president. At the national level (AAPG) he published, taught continuing education courses, served on committees, and was Treasurer and President. AAPG and RMAG recognized Norm for his involvement and contributions. The RMAG made him a honorary member and presented him with its most prestigious award, Explorer of the Year. The AAPG made him an honorary member and presented him with its most prestigious award, The Sidney Powers Medal.

This book is about finding oil and gas. People working together to find oil and gas. People who are good at finding oil and gas are optimistic, creative, persistent, resourceful, and enthusiastic. Norman Foster was all of those things and more. He wanted to help others become oil and gas finders, and that is why he served as co-editor of this book. We dedicate this book to Norman H. Foster—to his spirit, to his professionalism, and to his generosity.