TABLE OF CONTENTS

1 Rigid Unit Modes in Framework Structures: Theory, Experiment and Applications

Martin T. Dove, Kostya O. Tracllenko, Matthew G. Tucker, David A. Keel)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>FLEXIBILITY OF NETWORK STRUCTURES: SOME BASIC PRINCIPLES</td>
<td>3</td>
</tr>
<tr>
<td>Engineering principles</td>
<td>3</td>
</tr>
<tr>
<td>The role of symmetry</td>
<td>4</td>
</tr>
<tr>
<td>THE SPECTRUM OF RIGID UNIT MODES IN SILICATES</td>
<td>5</td>
</tr>
<tr>
<td>The "split-atom" method</td>
<td>5</td>
</tr>
<tr>
<td>Three-dimensional distribution of RUMs</td>
<td>6</td>
</tr>
<tr>
<td>"Density of states" approach</td>
<td>7</td>
</tr>
<tr>
<td>Framework structures containing octahedra</td>
<td>8</td>
</tr>
<tr>
<td>EXPERIMENTAL OBSERVATIONS 1: MEASUREMENTS OF DIFFUSE SCATTERING</td>
<td>9</td>
</tr>
<tr>
<td>IN ELECTRON DIFFRACTION</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENTAL OBSERVATIONS 2: INELASTIC NEUTRON SCATTERING MEASUREMENTS</td>
<td>10</td>
</tr>
<tr>
<td>Single crystal measurements</td>
<td>10</td>
</tr>
<tr>
<td>Measurements on polycrystalline samples</td>
<td>11</td>
</tr>
<tr>
<td>EXPERIMENTAL OBSERVATIONS 3: STRUCTURE MODELLING USING NEUTRON DIFFUSE</td>
<td>12</td>
</tr>
<tr>
<td>SCATTERING DATA FROM POLycrystalline SAMPLES</td>
<td></td>
</tr>
<tr>
<td>Total scattering measurements</td>
<td>12</td>
</tr>
<tr>
<td>The Reverse Monte Carlo method</td>
<td>13</td>
</tr>
<tr>
<td>Application of RMC modelling to the phase transition in cristobalite</td>
<td>15</td>
</tr>
<tr>
<td>Application of RMC modelling to the phase transition in quartz</td>
<td>19</td>
</tr>
<tr>
<td>APPLICATIONS OF THE RIGID UNIT MODE (RUM) MODEL</td>
<td>23</td>
</tr>
<tr>
<td>Displacive phase transitions</td>
<td>23</td>
</tr>
<tr>
<td>Theory of the transition temperature</td>
<td>25</td>
</tr>
<tr>
<td>Negative thermal expansion</td>
<td>26</td>
</tr>
<tr>
<td>Localised deformations in zeolites</td>
<td>27</td>
</tr>
<tr>
<td>RUMs in network glasses</td>
<td>28</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>28</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>30</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>30</td>
</tr>
</tbody>
</table>

Strain and Elasticity at Structural Phase Transitions in Minerals

Michael A. Carpenter

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>35</td>
</tr>
<tr>
<td>LATTICE GEOMETRY AND REFERENCE STATES</td>
<td>40</td>
</tr>
<tr>
<td>SYMMETRY-ADAPTED STRAIN, SYMMETRY-BREAKING STRAIN,</td>
<td></td>
</tr>
<tr>
<td>NON-SYMMETRY-BREAKING STRAIN AND SOME TENSOR FORMALITIES</td>
<td>41</td>
</tr>
<tr>
<td>COUPLING BETWEEN STRAIN AND THE ORDER PARAMETER</td>
<td>42</td>
</tr>
<tr>
<td>THERMODYNAMIC CONSEQUENCES OF STRAIN/ORDER PARAMETER</td>
<td></td>
</tr>
<tr>
<td>ELASTIC CONSTANT VARIATIONS</td>
<td>51</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>61</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>61</td>
</tr>
</tbody>
</table>
Mesoscopic Twin Patterns in Ferroelastic and Co-Elastic Minerals
Ekhard K. H. Salje

INTRODUCTION 65
FERROELASTIC TWIN WALLS 66
BENDING OF TWIN WALLS AND FORMATION OF NEEDLE DOMAINS 71
Comparison with experimental observations 72
NUCLEATION OF TWIN BOUNDARIES FOR RAPID TEMPERATURE QUENCH:
COMPUTER SIMULATION STUDIES 74
INTERSECTION OF A DOMAIN WALL WITH THE MINERAL SURFACE 79
REFERENCES 82

High-Pressure Structural Phase Transitions
R.J. Angel

INTRODUCTION 85
PRESSURE AND TEMPERATURE 85
SPONTANEOUS STRAIN 87
Experimental methods 87
Fitting high-pressure lattice parameters 89
Calculating strains 91
ELASTICITY 93
OTHER TECHNIQUES 96
ACKNOWLEDGMENTS 96
APPENDIX 97
Fitting the high-symmetry data 97
Strain calculation 99
REFERENCES 102

Order-Disorder Phase Transitions
Simon A. T. Redfern

INTRODUCTION 105
EQUILIBRIUM AND NON-EQUILIBRIUM THERMODYNAMICS 107
The Bragg-Williams model 108
Landau theory 112
Non-convergent ordering 117
Computer modelling of cation ordering 117
EXAMPLES OF REAL SYSTEMS 119
Cation ordering in ilmenite-hematite 119
Thermodynamics and kinetics of non-convergent disordering in olivine 123
Modelling non-convergent order-disorder in spineL 125
Bilinear coupling of Q and Qod in albite 125
The P6/mmc-Cccm transition in pure and K-bearing cordierite:
influence of chemical variation 127
Ferroelasticity and order/disorder in leucite-related frameworks 128
CONCLUSIONS 130
ACKNOWLEDGEMENTS 130
REFERENCES 130
Phase Transformations Induced by Solid Solution

Peter J. Heaney

INTRODUCTION 135

CONCEPTS OF MORPHOTROPISM 136
 A brief historical background 136
 Analogies between morphotropism and polymorphism 137

PRINCIPLES OF MORPHOTROPIC TRANSITIONS 140
 Types of atomic substitutions 140
 Linear dependence of T_c on composition 141
 Morphotropic phase diagrams (MPDs) 142
 Quantum saturation, the plateau effect, and defect tails 144
 Impurity-induced twinning 146
 Incommensurate phases and solid solutions 148

CASE STUDIES OF DISPLACIVE TRANSITIONS 148

INDUCED BY SOLID SOLUTION 149
 Ferroelectric perovskites 149
 Stabilized cubic zirconia 154
 Lead phosphate analogs to palmierite 155
 Cuproscheelite-sanmartinite solid solutions 158
 Substitutions in feldspar frameworks 160
 Stuffed derivatives of quartz 164

GENERAL CONCLUSIONS 166

ACKNOWLEDGMENTS 167

REFERENCES 167

Magnetic Transitions in Minerals

Richard J. Harrison

INTRODUCTION 175

MAGNETIC 175
 Driving force for magnetic ordering 175
 Classification of ordered (collinear) magnetic structures 176
 Models of magnetic ordering 176

CATION 179
 Non-convergent cation ordering in oxide spinels 180
 Verwey transition in magnetite 181
 Convergent cation ordering in rhombohedral oxides 181
 Magnetic consequences of cation ordering 181

SELF-REVERSED THERMOREMANENT MAGNETIZATION (SR-TRM) 189
 Mechanisms of self reversal 189
 Self-reversal in the ilmenite-hematite solid solution 190

CHEMICAL REMANENT MAGNETIZATION (CRM) 195
 Principles of CRM 195
 Transformation of γ-FeOOH γ-Fe$_2$O$_3$ α-Fe$_2$O$_3$ 196

CLOSING REMARKS 198

ACKNOWLEDGMENTS 198

REFERENCES 198
NMR Spectroscopy of Phase Transitions in Minerals
Brian L. Pilillips

INTRODUCTION 203
NMR SPECTROSCOPY 203
Basic concepts of NMR spectroscopy 204
Chemical shifts 205
Nuclear quadrupole effects 208
Dipole-dipole interactions 210
Dynamical effects 211
Relaxation rates 212
Summary 212
STRUCTURAL PHASE TRANSITIONS 213
transition in cristobalite 213
quartz 218
Cryolite (Na$_3$AlF$_6$) 221
Order Parameters: The pT-IT transition in anorthite (CaAl$_2$Si$_2$O$_8$) 224
Melanophlogite 226
INCOMMENSURATE PHASES 227
Sr$_2$SiO$_4$ 227
Akermanite 229
Tridymite 230
ORDERING/DISORDERING TRANSITIONS 232
Si,Al ordering in framework aluminosilicates 232
Cation ordering in spinels 235
CONCLUSIONS, ACKNOWLEDGMENTS 237
REFERENCES 237

Insights into Phase Transformations
from Mossbauer Spectroscopy
Catherine A. McCammon

INTRODUCTION 241
Mossbauer PARAMETERS 241
Isomer Shift 243
Quadrupole splitting 245
Hyperfine magnetic splitting 247
Relative Area 249
INSTRUMENTATION 251
APPLICATIONS 252
Structural transformations 253
Electronic transitions 255
Magnetic transitions 255
CONCLUDING REMARKS 256
REFERENCES 256
APPENDIX 259
Worked example: Incommensurate-normal phase transformation
in Fe-doped akermanite 259
APPENDIX REFERENCES 263