Hydrogeologic processes of large-scale tectonometric complexes in Mongolia–southern Siberia and on Mars

Tidal cycles in the sediments of Santa Barbara Basin

Restoration of lithosphere-scale wrenching from integrated structural and topographic data (Hercynian belt of western France)

Rule of attraction in enhancing deformation

Acid deformation of the Gorda plate: Constraining deformation models with new geophysical data

Is the Mount Isa copper deposit the product of forced deformation models with new geophysical data?

Debris fan reworking during low-magnitude floods in the Green River canyons of the eastern Uinta Mountains, Colorado and Utah

High-resolution subducting slab structure beneath northern Honshu, Japan, revealed by double-diffuse reflection

How do spiral troughs form on Mars?

Cover: Color image of a numerical model of the spiral troughs of the Martian pole caps (red and black are troughs, yellow and white are crests). This model includes the absorption of solar energy, accumulation, ablation, and heat conduction within the ice cap. Troughs migrate as snow flows through the cap, eventually joining up to form continuous spiral arms from the pole (center of image) to the ice margin, similar to those on Mars today. See “How do spiral troughs form on Mars?” by Jon D. Pelletier, p. 385–387.

Photo by: Jon D. Pelletier.

Cover design by: Margo Sajian.

Hydrogeologic processes of large-scale tectonometric complexes in Mongolia–southern Siberia and on Mars

Tidal cycles in the sediments of Santa Barbara Basin

Restoration of lithosphere-scale wrenching from integrated structural and topographic data (Hercynian belt of western France)

Rule of attraction in enhancing deformation

Acid deformation of the Gorda plate: Constraining deformation models with new geophysical data

Is the Mount Isa copper deposit the product of forced deformation models with new geophysical data?

Debris fan reworking during low-magnitude floods in the Green River canyons of the eastern Uinta Mountains, Colorado and Utah

High-resolution subducting slab structure beneath northern Honshu, Japan, revealed by double-diffuse reflection

How do spiral troughs form on Mars?

Cover: Color image of a numerical model of the spiral troughs of the Martian pole caps (red and black are troughs, yellow and white are crests). This model includes the absorption of solar energy, accumulation, ablation, and heat conduction within the ice cap. Troughs migrate as snow flows through the cap, eventually joining up to form continuous spiral arms from the pole (center of image) to the ice margin, similar to those on Mars today. See “How do spiral troughs form on Mars?” by Jon D. Pelletier, p. 385–387.

Photo by: Jon D. Pelletier.

Cover design by: Margo Sajian.

Hydrogeologic processes of large-scale tectonometric complexes in Mongolia–southern Siberia and on Mars

Tidal cycles in the sediments of Santa Barbara Basin

Restoration of lithosphere-scale wrenching from integrated structural and topographic data (Hercynian belt of western France)

Rule of attraction in enhancing deformation

Acid deformation of the Gorda plate: Constraining deformation models with new geophysical data

Is the Mount Isa copper deposit the product of forced deformation models with new geophysical data?

Debris fan reworking during low-magnitude floods in the Green River canyons of the eastern Uinta Mountains, Colorado and Utah

High-resolution subducting slab structure beneath northern Honshu, Japan, revealed by double-diffuse reflection

How do spiral troughs form on Mars?

Cover: Color image of a numerical model of the spiral troughs of the Martian pole caps (red and black are troughs, yellow and white are crests). This model includes the absorption of solar energy, accumulation, ablation, and heat conduction within the ice cap. Troughs migrate as snow flows through the cap, eventually joining up to form continuous spiral arms from the pole (center of image) to the ice margin, similar to those on Mars today. See “How do spiral troughs form on Mars?” by Jon D. Pelletier, p. 385–387.

Photo by: Jon D. Pelletier.

Cover design by: Margo Sajian.